|
|
|
|
移动端

7m_cn:太赞了,大神总结的常见数据分析规范!

本文来源:http://www.ssb69.com/ent_ifeng_com/

菲律宾申博直营现金网,当前,我国经济发展进入新常态,传统发展动力不断减弱,粗放型增长方式难以为继。但他当选后,不仅未恢复美台外交关系,还在1982年与中国签订八一七公报,对大陆做出明确承诺,逐步减少美国对台的武器出售等。更重要的是在2010年,美国制造业的总产值被中国超过,结束了一个世纪的霸主地位。  从抢票高峰日期来看,腊月廿八和腊月廿四将是抢票双高峰。

梁磊说。  2015年12月2日,一纸命令传来,第27集团军领导机关和直属分队移防山西,成为全军第一个因改革进行部署调整的军级单位。  “但各级政府仍拥有很多资产,在缺乏规范有效的资产管理制度的情况下,地方政府仍有很强的能力继续借债。  这是真正积极的财政政策!李克强强调,各部门一定要统一思想,财政收支压力再大,也要积极为企业减税减负。

[责任编辑:郭洁宇]  据《证券日报》记者粗略统计,截至目前,国家发改委陆续发布《关于加强地方天然气输配价格监管降低企业用气成本的通知》、《天然气管道运输价格管理办法(试行)》、《天然气管道运输定价成本监审办法(试行)》、《关于明确储气设施相关价格政策的通知》、《关于做好油气管网设施开放相关信息公开工作的通知》、《关于做好2016年天然气迎峰度冬工作的通知》、《关于推进化肥用气价格市场化改革的通知》、《关于福建省天然气门站价格政策有关事项的通知》共八份政策。因此,在服用中草药时,一般不宜与浓茶同服。2017年减税重头戏第一财经记者采访多名企业家后发现,虽然当前减税降费举措降低了企业成本,但在经济下行、效益下滑的背景下,企业税费负担仍然较重。

分析报告实质上是一种沟通与交流的形式,主要作用在于展示分析结果、验证分析质量,为决策者提供参考依据,并可以有针对性、操作性、战略性的决策。今天,我们来一探究竟常见数据分析及报告规范。

作者:吴迪来源:趣店技术团队|2020-05-11 18:00

在数据分析中,无论数据收集过程有多么科学、数据处理多么先进、分析方法多么高深,如果不能将它们有效地组织和展示出来,并与决策者进行沟通与交流,就无法体现数据和分析的价值。因此,分析报告实质上是一种沟通与交流的形式,主要作用在于展示分析结果、验证分析质量,为决策者提供参考依据,并可以有针对性、操作性、战略性的决策。今天,我们来一探究竟常见数据分析及报告规范。

Part1结构规范及写作

报告常用结构:

1.1 架构清晰、主次分明

数据分析报告要有一个清晰的架构,层次分明能降低阅读成本,有助于信息的传达。虽然不同类型的分析报告有其适用的呈现方式,但总的来说作为议论文的一种,大部分的分析报告还是适用总-分-(总) 的结构。


推荐学习金字塔原理,中心思想明确,结论先行,以上统下,归类分组,逻辑递进。行文结构先重要后次要,先全局后细节,先结论后原因,先结果后过程。对于不太重要的内容点到即止,舍弃细枝末节与主题不相关的东西。

1.2 核心结论先行、有逻辑有依据

结论求精不求多。大部分情况下,数据分析是为了发现问题,一份分析报告如果能有一个最重要的结论就已经达到目的。精简的结论能降低阅读者的阅读门槛,相反太繁琐、有问题的结论100个=0。报告要围绕分析的背景和目的以及要解决的问题,给出明确的答案和清晰的结论;相反,结论或主题太多会让人不知所云,不知道要表达什么。分析结论一定要基于紧密严谨的数据分析推导过程,尽量不要有猜测性的结论,太主观的结论就会失去说服力,一个连自己都没有把握的结论千万不要在报告里误导别人。但实际中,部分合理的猜测找不到直观可行的验证,在给出猜测性结论的时候,一定是基于合理的、有部分验证依据前提下,谨慎地给出结论,并且说明是猜测。如果在条件允许的前提下可以通过调研/回访的方式进行论证。不回避 “不良结论” 。在数据准确、推导合理的基础上,发现产品或业务问题并直击痛点,这其实是数据分析的一大价值所在。

1.3 结合实际业务、建议合理

基于分析结论,要有针对性的建议或者提出详细解决方案,那么如何写建议呢?首先,要搞清给谁提建议。不同的目标对象所处的位置不同,看问题的角度就不一样,比如高层更关注方向,分析报告需要提供业务的深度洞察和指出潜在机会点,中层及员工关注具体策略,基于分析结论能通过哪些具体措施去改善现状。 其次,要结合业务实际情况提建议。 虽然建议是以数据分析为基础提出的,但仅从数据的角度去考虑就容易受到局限、甚至走入脱离业务忽略行业环境的误区,造成建议提了不如不提的结果。因此提出建议,一定要基于对业务的深刻了解和对实际情况的充分考虑。再进一步,如果可以给出这个建议实施后的收益,下单转化提升多少、交易提升多少、能节省多少成本等,把价值点直接传递给阅读对象。

上面讲了报告的写作原则,举个例子,参考艾瑞网,《留存与未来-疫情背后的互联网发展趋势报告》

Tips:尝试站在读者的角度去写分析报告,内容通俗易懂,用语规范谨慎。如果汇报对象不是该领域的专家,就要避免使用太多晦涩难懂的词句,同时报告中使用的名词术语一定要规范,要与既定的标准(如公司指标规范)以及业内公认的术语一致。

Part2数据使用及图表

数据分析往往是80%的数据处理,20%的分析。大部分时候,收集和处理数据确实会占据很多时间,最后才在正确数据的基础上做分析,既然一切都是为了找到正确的结论,那么保证数据准确就显得格外重要,否则一切努力都是误导别人。

2.1 分析需要基于可靠的数据源

用于鉴别信息/数据的可靠性,主要有四种方法:同类对比、狭义/广义比对、相关对比和演绎归谬。2.1.1 同类对比与口径相同或相近,但来源不同的信息进行对比。示例:最常见就是把跑出来的数据和报表数据核对校验。2.1.2 狭义/广义对比通过与更广义(被包含)或更狭义(包含)的信息进行对比。示例:3C品类销售额与商城总销售额比较,3C的销售额更高显然是错误的,因为商城总销售额包含3C销售额;某些页面/频道的UV与APP总UV比较也类似。 2.1.3 相关对比通过与具有相关性、关联性的信息进行对比。示例:某平台的Dn留存率,对于同一个基准日期来说,D60留存率一定低于D30留存率的,如果出现大于的情况,那就是错误数据了。2.1.4 演绎归谬通过对现有证据的深入演绎,推导出结果,判断结果是否合理。示例:比如某平台的销售客单价2000左右,总销售额1亿左右;计算得出当日交易用户数10万,通过乘以客单价,得到当天销售额2亿,显然与业务体量不符,为错误的数据。

Tips:以上都是常用的方法论,最核心是足够了解业务,对关键指标数据情况了然于心,那么对数据准确性的判断水到渠成。对此,建议是每日观测核心业务的数据情况,并分析波动原因,培养业务理解力和数据敏感度。

2.2 尽量图标化,提高可读性

用图表代替大量堆砌的数字,有助于阅读者更形象直观地看清楚问题和结论,当然,图表也不要太多,过多的图表一样会让人无所适从。让图表五脏俱全,一张图必须包含完整的元素,才能让阅读者一目了然。标题、图例、单位、脚注、资料来源这些图表元素就好比图表的五脏六腑。 要注意的条条框框。首先,避免生出无意义的图表。决定做不做图的唯一标准就是能否帮助你有效地表达信息。第二点、不要把图表撑破。最好一张图表反映一个观点,突出重点,让读者迅速捕捉到核心思想。第三点、只选对的,不选复杂的。第四点、一句话标题。

常见的图表类型选择:

图表使用Tips:2.2.1 折线图选用的线型要相对粗些,线条一般不超过5条,不使用倾斜的标签,纵坐标轴一般刻度从0开始。预测值的线条线型改为虚线。2.2.2 柱形图同一数据序列使用相同的颜色。不使用倾斜的标签,纵坐标轴一般刻度从0开始。一般来说,柱形图最好添加数据标签,如果添加了数据标签,可以删除纵坐标刻度线和网格线。2.2.3 条形图同一数据序列使用相同的颜色。不使用倾斜的标签,最好添加数据标签,尽量让数据由大到小排列,方便阅读。2.2.4 饼图饼图使用场景相对少,如需使用,注意以下事项:把数据从12点钟的位置开始排列,最重要的成分紧靠12点钟的位置。数据项不要太多,保持在6项以内,不使用爆炸式的饼图分离。不过可以将某一片的扇区分离出来,前提是你希望强调这片扇区。饼图不使用图例。不使用3D效果。当扇区使用颜色填充时,推荐使用白色的边框线,具有较好的切割感。2.2.5 警惕图表说谎虚张声势的增长人们喜欢研究一条线的发展趋势,例如股市、房价、销售额的增长趋势,有时候为了吸引读者故意夸大变化趋势,如图1通过截断数轴夸大增长速度,从正常数轴的图2看到增长是缓慢的。

3D效果的伪装3D图形容易造成视觉偏差,如图1有3D效果,看上去 A->B->C->D->E依次递增,实际是D>E,要格外小心图表的伪装。

Part3常见数据分析误区

“用数据说话”,已经成为一种流行语。在很多人的心里,数据就代表着科学,科学就意味着真相。“数据不会骗人”,也成了说服别人时常用的口头禅,事实果真如此吗?让我们来谈谈那些常见的误区。

3.1 控制变量谬误

在做A/B测试时没有控制好变量,导致测试结果不能反映实验结果。或者在进行数据对比时,两个指标没有可比性。举个例子,为测试不同营销时间点对下的转化的影响,但A实验使用短信营销、B实验使用电话营销,未控制变量(营销方式),导致实验无法得出结论。

3.2 样本谬误

3.2.1 样本量不够统计学的基础理论基石之一就是大数定律,只有当数据量达到一定程度后,才能反映出特定的规律。如果出现样本量极少的情况,建议把时间线拉长,获得足量的样本。或者将不重要的限定条件去掉,增加样本数。3.2.2 存在选择性偏见或者幸存者偏见统计学的另一大理论基石是中心极限定理。简单描述就是,总体样本中,任意一个群体样本的平均值,都会围绕在这个群体的整体平均值周围。举个例子,在应用升级期间,衡量登录用户数、交易用户数等指标,来判断用户对新版本的喜欢是否优于老版本。听上去非常合理,但这里实际就隐藏了选择性偏见,因为新版本发布时,第一批升级上来的用户往往就是最活跃的用户,往往这批用户的指标较好,但不代表新版本更好。3.2.2 混入脏数据这种数据的破坏性比较大,可能得出错误的结论。通常我们会采用数据校验的手段,屏蔽掉校验失败的数据。同时,在分析具体业务时,也要针对特定业务,对所使用的数据进行合理性限定,过滤掉异常离群值,来确保拥有比较好的数据质量。

3.3 因果相关谬误

会误把相关当因果,忽略中介变量。比如,有人发现雪糕的销量和河溪溺死的儿童数量呈明显相关,就下令削减雪糕销量。其实可能只是因为这两者都是发生在天气炎热的夏天。天气炎热,购买雪糕的人就越多,而去河里游泳的人也显著增多。

3.4 辛普森悖论

简单来说,就是在两个相差较多的分组数据相加时,在分组比较中都占优势的一方,会在总评中反而是失势的一方。

3.5 个人认知谬误

主观臆断、经验当事实、个体当整体、特征当全貌、眼见当事实。举个主观臆断的例子:某个产品A页面到B页面的转化率30%,直接判断为很低,推导出可以提高到75%。但实际类似产品或者用户行为决定页面的转化率就只有这么高,得出一个错误的结论。标准至关重要,数据+标准=判断。有了判断才能深入分析。通过分组对比找标准(象限法、多维法、二八法、对比法),有标准通过分析对比,找到“好/坏”的点

统计学规律和理论不会错,犯错的是使用它的人。因此,我们在进行数据分析时,一定要格外小心,错误的数据,披上科学的外衣,就很难分辨了。

【编辑推荐】

  1. 数据分析必备的5款Python爬虫库
  2. Seaborn 常用的 10 种数据分析图表
  3. 一个案例,教你掌握数据分析最关键的5个思维
  4. Python数据分析:大众点评数据进行选址
  5. 大数据分析正在法律行业的发展
【责任编辑:未丽燕 TEL:(010)68476606】

点赞 0
分享:
大家都在看
猜你喜欢

订阅专栏+更多

从头解锁Python运维

从头解锁Python运维

多维度详解
共19章 | 叱诧少帅

264人订阅学习

Active Directory 架构规划实战

Active Directory 架构规划实战

4类AD架构规划
共15章 | wx5918591c0084b

320人订阅学习

庖丁解牛Ceph分布式存储

庖丁解牛Ceph分布式存储

云计算存储的基石
共5章 | Happy云实验室

189人订阅学习

订阅51CTO邮刊

点击这里查看样刊

订阅51CTO邮刊

51CTO服务号

51CTO官微

申博网上游戏直营网 菲律宾申博138娱乐网直营 申博登陆网址 www.sbc883.com 申博网址 申博138线上娱乐直营网
菲律宾太阳娱乐网址登入 菲律宾太阳城直营 申博娱乐网址 菲律宾申博游戏 申博开户登入 申博代理登录
申博游戏现金网直营 www.666msa.com www.66js.com 申博手机版下载登入 申博怎么申请提款 申博代理官网登入